کشت سلول و بافت 'گیاهی
لیلا زرندی میاندوآب
چکیده
Ascorbic Acid (AsA) is a powerful antioxidant, vitamin, and enzyme cofactor that has significant effects on plant growth and development. A study was performed to investigate the effects of AsA on the formation and growth of adventitious roots in cuttings of Tradescantia fluminensis. The plants were treated with two levels of AsA (0, and 0.5 mM). Lengths and numbers of adventitious roots, free amino acid content, hydrogen peroxide content, ascorbate-peroxidase activity, and AsA/ Dehydroascorbate (DHA) ratio were measured. Application of 0.5 mM AsA reduced the number of adventitious roots but did ...
بیشتر
Ascorbic Acid (AsA) is a powerful antioxidant, vitamin, and enzyme cofactor that has significant effects on plant growth and development. A study was performed to investigate the effects of AsA on the formation and growth of adventitious roots in cuttings of Tradescantia fluminensis. The plants were treated with two levels of AsA (0, and 0.5 mM). Lengths and numbers of adventitious roots, free amino acid content, hydrogen peroxide content, ascorbate-peroxidase activity, and AsA/ Dehydroascorbate (DHA) ratio were measured. Application of 0.5 mM AsA reduced the number of adventitious roots but did not affect the lengths of adventitious roots. Supplemental AsA leads to the reduction of free amino acids and hydrogen peroxide contents, and AsA/DHA ratio in comparison to control plants. The activity of ascorbate-peroxidase was increased under AsA application. The addition of AsA to the rooting medium delayed the formation time of adventitious roots in T. fluminensis. The results suggest that the differentiation of parenchymal cells into tracheids during the use of AsA delays because the H2O2 and amino acids are required for the lignification of secondary cell walls. We assumed that increasing the activity of APX results in AsA/DHA ratio reduction by the addition of AsA to the rooting medium.
کشت سلول و بافت 'گیاهی
لیلا زرندی میاندوآب؛ زهرا اوراقی اردبیلی
چکیده
To gain insight into metal-based nanomaterials, this study figured out the physiological and molecular behaviors of Melissa officinalis to supplementation of nutrient solution with red nano elemental selenium (nSe; 0, 10, and 50 mgl-1) or bulk Se (BSe). The nSe10 application led to drastic increases in root and shoot fresh weights, and chlorophyll content. While, the nSe at 50 mgl-1 exhibited severe phyotoxicity. Also, nSe10 enhanced uptake and accumulation of Ca and Mg in both leaf and root, contrasted to the nSe50-treated plants. The applied supplements modified phenylalanine ammonia lyase activity, ...
بیشتر
To gain insight into metal-based nanomaterials, this study figured out the physiological and molecular behaviors of Melissa officinalis to supplementation of nutrient solution with red nano elemental selenium (nSe; 0, 10, and 50 mgl-1) or bulk Se (BSe). The nSe10 application led to drastic increases in root and shoot fresh weights, and chlorophyll content. While, the nSe at 50 mgl-1 exhibited severe phyotoxicity. Also, nSe10 enhanced uptake and accumulation of Ca and Mg in both leaf and root, contrasted to the nSe50-treated plants. The applied supplements modified phenylalanine ammonia lyase activity, concentrations of flavonids, glutathione, and proline. Moreover, these supplements in the dose and type-dependent manners changed the activities of catalase. Furthermore, the applied treatments up-regulated the expression of phenylalanine ammonia-lyase (PAL) and Coumarate: CoA-ligase (4CL) genes. The comparative physiological and molecular evidence on phytotoxicity and potential advantages of nSe and its bulk counterpart was provided as a theoretical basis for exploiting in food, agricultural, and pharmaceutical industries.