کشت سلول و بافت 'گیاهی
لیلا زرندی میاندوآب؛ زهرا اوراقی اردبیلی
چکیده
To gain insight into metal-based nanomaterials, this study figured out the physiological and molecular behaviors of Melissa officinalis to supplementation of nutrient solution with red nano elemental selenium (nSe; 0, 10, and 50 mgl-1) or bulk Se (BSe). The nSe10 application led to drastic increases in root and shoot fresh weights, and chlorophyll content. While, the nSe at 50 mgl-1 exhibited severe phyotoxicity. Also, nSe10 enhanced uptake and accumulation of Ca and Mg in both leaf and root, contrasted to the nSe50-treated plants. The applied supplements modified phenylalanine ammonia lyase activity, ...
بیشتر
To gain insight into metal-based nanomaterials, this study figured out the physiological and molecular behaviors of Melissa officinalis to supplementation of nutrient solution with red nano elemental selenium (nSe; 0, 10, and 50 mgl-1) or bulk Se (BSe). The nSe10 application led to drastic increases in root and shoot fresh weights, and chlorophyll content. While, the nSe at 50 mgl-1 exhibited severe phyotoxicity. Also, nSe10 enhanced uptake and accumulation of Ca and Mg in both leaf and root, contrasted to the nSe50-treated plants. The applied supplements modified phenylalanine ammonia lyase activity, concentrations of flavonids, glutathione, and proline. Moreover, these supplements in the dose and type-dependent manners changed the activities of catalase. Furthermore, the applied treatments up-regulated the expression of phenylalanine ammonia-lyase (PAL) and Coumarate: CoA-ligase (4CL) genes. The comparative physiological and molecular evidence on phytotoxicity and potential advantages of nSe and its bulk counterpart was provided as a theoretical basis for exploiting in food, agricultural, and pharmaceutical industries.