Balali Bahadorani, M. and Zare Mirakabadi, A. 2016. Cytopathic effect of snake (echis carinatus) venom on human embryonic kidney cells. Asia Pacific Journal of Medical Toxicology, 5(3): 88-93..
Dehghani, R., Fathi, B., Shahi, M.P. and Jazayeri, M. 2014. Ten years of snakebites in iran. Toxicon, 90: 291-298.
Doley, R., Jackson, K., Madaras, F., Vonk, F., Vidal, N. and Mirtschin, P. 2011. Snake venom: From fieldwork to the clinic. BioEssays, 33(4): 269-279.
Esmaeili Jahromi, H., Zare Mirakabadi, A. and Kamalzadeh, M. 2016. Evaluation of iranian snake ‘macrovipera lebetina’venom cytotoxicity in kidney cell line hek-293.
Feofanov, A.V., Sharonov, G.V., Astapova, M.V., Rodionov, D.I., Utkin, Y.N. and Arseniev, A.S. 2005. Cancer cell injury by cytotoxins from cobra venom is mediated through lysosomal damage. Biochemical Journal, 390(1): 11-18.
Garcıa, L., e Silva, L.P., Ramos, O., Carmona, A., Bersanetti, P. and Selistre-de-Araujo, H. 2004. The effect of post-translational modifications on the hemorrhagic activity of snake venom metalloproteinases. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 138(1): 23-32.
Garzi, A., Nazari, A. and Abbasi, M. 2013. Deleterious effects of echis carinatus venom on liver and lung tissues of a bird species. Journal of Animal Biology, 5(3): 51-58.
Gasanov, S.E., Dagda, R.K. and Rael, E.D. 2014. Snake venom cytotoxins, phospholipase a2s, and zn2+-dependent metalloproteinases: Mechanisms of action and pharmacological relevance. Journal of clinical toxicology, 4(1): 1000181.
Goswami, P.K., Samant, M. and Srivastava, R.S. 2014. Snake venom, anti-snake venom & potential of snake venom. International Journal of Pharmacy and Pharmaceutical Sciences, 6(5): 4-7.
Gutiérrez, J., Romero, M., Díaz, C., Borkow, G. and Ovadia, M. 1995. Isolation and characterization of a metalloproteinase with weak hemorrhagic activity from the venom of the snake bothrops asper (terciopelo). Toxicon, 33(1): 19-29.
Gutiérrez, J.M., Williams, D., Fan, H.W. and Warrell, D.A. 2010. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon, 56(7): 1223-1235.
Hekmat, A., Afrough, M., Hesami Tackallou, S. and Ahmad, F. 2020. Synergistic effects of titanium dioxide nanoparticles and paclitaxel combination on the DNA structure and their antiproliferative role on mda-mb-231cells. Journal of Nanoanalysis: -. DOI 10.22034/jna.2020.1869287.1141.
Hekmat, A. and Saboury, A.A. 2019. Structural effects of the syntheticcobalt–manganese-zinc ferrite nanoparticles (Co 0.3 Mn 0.2 Zn 0.5Fe2O4 NPs) on DNA and its antiproliferative effect on t47dcells. BioNanoScience, 9(4): 821-832.
Hekmat, A., Saboury, A.A., Divsalar, A. and Seyedarabi, A. 2013. Structural effects of tio2 nanoparticles and doxorubicin on DNA and their antiproliferative roles in t47d and mcf7 cells. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 13(6): 932-951.
Koh, D., Armugam, A. and Jeyaseelan, K. 2006. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences CMLS, 63(24): 3030-3041.
Kolde, H.-J. 2004. Haemostasis: Physiology, pathology, diagnostics. Pentapharm.
Konshina, A.G., Boldyrev, I.A., Utkin, Y.N., Omel'kov, A.V. and Efremov, R.G. 2011. Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids. PloS one, 6(4): e19064.
Mello, D.F., Trevisan, R., Rivera, N., Geitner, N.K., Di Giulio, R.T., Wiesner, M.R., Hsu-Kim, H. and Meyer, J.N. 2020. Caveats to the use of mtt, neutral red, hoechst and resazurin to measure silver nanoparticle cytotoxicity. Chemico-biological interactions, 315: 108868.