نوع مقاله : مقاله کوتاه

نویسنده

گروه زیست شناسی، دانشکده علوم پایه، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران،

10.30495/rkctc.2020.16884

چکیده

انسان‌ها در طول سالیان طولانی همواره با ویروس‌ها درگیر بوده‌اند. عفونت‌های ویروسی موجب بروز عوارض شدید و حتی کشنده‌ای در انسان و حیوانات می‌شود. از آنجا که برخی ویروس‌ها خاصیت کشندگی بیشتری نسبت به دیگر ویروس‌ها دارند، بنابراین شناسایی سریع و درمان ویروس‌ها بسیار حائز اهمیت است. آپتامرها توالی‌های تک رشته‌ای سنتزی از جنسRNA ، DNA یا پپتید هستند و با اختصاصیت بالا به مولکول هدف متصل می‌گردند. مزیت‌هایی ویژه‌ آپتامرها باعث شده موثرتر از آنتی بادی‌ها عمل نمایند. آپتامرها عموما از طریق فرآیند آزمایشگاهی Systematic Evolution of Ligands by Exponential enrichment (SELEX) از یک کتابخانه، غربال و انتخاب می‌شوند و می‌توانند به مولکول‌های هدف متصل شوند. در مقاله حاضر ابتدا به معرفی آپتامرها و سپس به بررسی کاربرد آنها در شناسایی سریع و درمان برخی ویروس‌های کشنده (ایدز، ابولا، آنفولانزا، پاپیلوما، سارس، مرس، آنفولانزا و کووید-19) پرداخته می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Aptamers as a new approach in detection, diagnosis, and therapy of deadly Viruses

نویسنده [English]

  • Azadeh Hekmat

Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

چکیده [English]

Humans have been battling viruses since before our species had even evolved into its modern form. some viruses are equally deadly, and some that are even deadlier. Accurate and early detection of viruses is often crucial for clinical diagnosis and therapy. Aptamers are the artificial single-stranded DNA, RNA sequences, or peptides that can bind to certain targets with tremendously high specificity. A number of their unique features make them a more effective choice than antibodies. Aptamers are typically generated through Systematic Evolution of Ligands by Exponential enrichment (SELEX) and screened and selected via in vitro process from a library, making it possible to attach to any target molecules. In this review, aptamers were briefly defined and their applications in the rapid detection and diagnosis of some deadly viruses (HIV, Ebola, IVA, IVB, HPV, SARS-CoV, MERS-CoV, and COVID-19) were described.

کلیدواژه‌ها [English]

  • Aptamer
  • Influenza
  • Ebola
  • HIV
  • HPV
  • COVID-19
  • Virus
Allen, P., Worland, S. and Gold, L. 1995. Isolation of high-affinity rna ligands to hiv-1 integrase from a random pool. Virology, 209(2): 327-336.
Belyaeva, T.A., Nicol, C., Cesur, Ö., Travé, G., Blair, G.E. and Stonehouse, N.J. 2014. An rna aptamer targets the pdz-binding motif of the hpv16 e6 oncoprotein. Cancers, 6(3): 1553-1569.
Binning, J.M., Wang, T., Luthra, P., Shabman, R.S., Borek, D.M., Liu, G., Xu, W., Leung, D.W., Basler, C.F. and Amarasinghe, G.K. 2013. Development of rna aptamers targeting ebola virus vp35. Biochemistry, 52(47): 8406-8419.
Blankson, J.N., Persaud, D. and Siliciano, R.F. 2002. The challenge of viral reservoirs in hiv-1 infection. Annual review of medicine, 53(1): 557-593.
Chen, Z., Wu, Q., Chen, J., Ni, X. and Dai, J. 2020. A DNA aptamer based method for detection of sars-cov-2 nucleocapsid protein. Virologica Sinica: 1.
Cheng, C., Dong, J., Yao, L., Chen, A., Jia, R., Huan, L., Guo, J., Shu, Y. and Zhang, Z. 2008. Potent inhibition of human influenza h5n1 virus by oligonucleotides derived by selex. Biochemical and biophysical research communications, 366(3): 670-674.
Dadonaite, B., Gilbertson, B., Knight, M.L., Trifkovic, S., Rockman, S., Laederach, A., Brown, L.E., Fodor, E. and Bauer, D.L. 2019. The structure of the influenza a virus genome. Nature microbiology, 4(11): 1781-1789.
de Soultrait, V.R., Lozach, P.-Y., Altmeyer, R., Tarrago-Litvak, L., Litvak, S. and Andreola, M. 2002. DNA aptamers derived from hiv-1 rnase h inhibitors are strong anti-integrase agents. Journal of molecular biology, 324(2): 195-203.
Dey, A.K., Khati, M., Tang, M., Wyatt, R., Lea, S.M. and James, W. 2005. An aptamer that neutralizes r5 strains of human immunodeficiency virus type 1 blocks gp120-ccr5 interaction. Journal of virology, 79(21): 13806-13810.
Ding, N., Zhao, K., Lan, Y., Li, Z., Lv, X., Su, J., Lu, H., Gao, F. and He, W. 2017. Induction of atypical autophagy by porcine hemagglutinating encephalomyelitis virus contributes to viral replication. Frontiers in cellular and infection microbiology, 7: 56.
Gopinath, S.C., Misono, T.S., Kawasaki, K., Mizuno, T., Imai, M., Odagiri, T. and Kumar, P.K. 2006. An rna aptamer that distinguishes between closely related human influenza viruses and inhibits haemagglutinin-mediated membrane fusion. Journal of General Virology, 87(3): 479-487.
Gourronc, F.A., Rockey, W.M., Thiel, W.H., Giangrande, P.H. and Klingelhutz, A.J. 2013. Identification of rna aptamers that internalize into hpv-16 e6/e7 transformed tonsillar epithelial cells. Virology, 446(1-2): 325-333.
Graham, J.C. and Zarbl, H. 2012. Use of cell-selex to generate DNA aptamers as molecular probes of hpv-associated cervical cancer cells. PLoS One, 7(4): e36103.
Hekmat, A. 2021. The role of aptamers in diagnosis of human coronaviruses. Science Cultivation, 11(1): 69-75.
Khati, M., Schüman, M., Ibrahim, J., Sattentau, Q., Gordon, S. and James, W. 2003. Neutralization of infectivity of diverse r5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′ f-rna aptamers. Journal of virology, 77(23): 12692-12698.
Knipe, D., Howley, P., Griffin, D., Lamb, R., Martin, M., Roizman, B. and Straus, S. 2007. Fields virology, lippincott williams & wilkins. Philadelphia, PA [Google Scholar].
Lakshmipriya, T., Fujimaki, M., Gopinath, S.C. and Awazu, K. 2013. Generation of anti-influenza aptamers using the systematic evolution of ligands by exponential enrichment for sensing applications. Langmuir, 29(48): 15107-15115.
Leija-Montoya, A.G., Benítez-Hess, M.L. and Alvarez-Salas, L.M. 2016. Application of nucleic acid aptamers to viral detection and inhibition. Nucleic Acids—From Basic Aspects to Laboratory Tools, Edited by Marcelo L. Larramendy and Sonia Soloneski: 93-119.
Leija-Montoya, A.G., Benítez-Hess, M.L., Toscano-Garibay, J.D. and Alvarez-Salas, L.M. 2014. Characterization of an rna aptamer against hpv-16 l1 virus-like particles. nucleic acid therapeutics, 24(5): 344-355.
Mathers, C. 2008. The global burden of disease: 2004 update. World Health Organization.
Nicol, C., Bunka, D.H., Blair, G.E. and Stonehouse, N.J. 2011. Effects of single nucleotide changes on the binding and activity of rna aptamers to human papillomavirus 16 e7 oncoprotein. Biochemical and biophysical research communications, 405(3): 417-421.
Pavski, V. and Le, X.C. 2001. Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis. Analytical chemistry, 73(24): 6070-6076.
Phan, A.T., Modi, Y.S. and Patel, D.J. 2004. Propeller-type parallel-stranded g-quadruplexes in the human c-myc promoter. Journal of the American Chemical Society, 126(28): 8710-8716.
Proske, D., Blank, M., Buhmann, R. and Resch, A. 2005. Aptamers—basic research, drug development, and clinical applications. Applied microbiology and biotechnology, 69(4): 367-374.
Ren, L.-L., Wang, Y.-M., Wu, Z.-Q., Xiang, Z.-C., Guo, L., Xu, T., Jiang, Y.-Z., Xiong, Y., Li, Y.-J. and Li, X.-W. 2020. Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study. Chinese medical journal.
Rye, P.D. and Nustad, K. 2001. Immunomagnetic DNA aptamer assay. BioTechniques, 30(2): 290-295.
Shiratori, I., Akitomi, J., Boltz, D.A., Horii, K., Furuichi, M. and Waga, I. 2014. Selection of DNA aptamers that bind to influenza a viruses with high affinity and broad subtype specificity. Biochemical and Biophysical Research Communications, 443(1): 37-41.
Shubham, S., Hoinka, J., Banerjee, S., Swanson, E., Dillard, J.A., Lennemann, N.J., Przytycka, T.M., Maury, W. and Nilsen-Hamilton, M. 2018. A 2′ fy-rna motif defines an aptamer for ebolavirus secreted protein. Scientific reports, 8(1): 1-11.
Stoltenburg, R., Reinemann, C. and Strehlitz, B. 2007. Selex—a (r) evolutionary method to generate high-affinity nucleic acid ligands. Biomolecular engineering, 24(4): 381-403.
Strehlitz, B., Nikolaus, N. and Stoltenburg, R. 2008. Protein detection with aptamer biosensors. Sensors, 8(7): 4296-4307.
Suenaga, E. and Kumar, P.K. 2014. An aptamer that binds efficiently to the hemagglutinins of highly pathogenic avian influenza viruses (h5n1 and h7n7) and inhibits hemagglutinin–glycan interactions. Acta biomaterialia, 10(3): 1314-1323.
Toscano-Garibay, J.D., Benítez-Hess, M.L. and Alvarez-Salas, L.M. 2015. Targeting of the hpv-16 e7 protein by rna aptamers. In: Cervical cancer. Springer: pp: 221-239.
Yamamoto, R., Toyoda, S., Viljanen, P., Machida, K., Nishikawa, S., Murakami, K., Taira, K. and Kumar, P. 1995. In vitro selection of rna aptamers that can bind specifically to tat protein of hiv-1. In: Nucleic acids symposium series. pp: 145.
Zhang, Y., Yu, Z., Jiang, F., Fu, P., Shen, J., Wu, W. and Li, J. 2015. Two DNA aptamers against avian influenza h9n2 virus prevent viral infection in cells. PloS one, 10(3): e0123060.