نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات پوست و سلول‌های بنیادی، دانشگاه علوم پزشکی تهران، تهران، ایران

2 گروه زیست شناسی، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

3 گروه هماتولوژی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی تهران، تهران، ایران

چکیده

پیشینه مطالعه و هدف: مطالعات متعددی در رابطه با ویژگی‌های زیستی بخش عروق استرومای مشتق از بافت چربی انسان (Human stromal vascular fraction (SVF) derived from adipose tissue) انجام گرفته است؛ هرچند، بررسی‌ها در خصوص تنوع جمعیت سلولی این بخش به دلیل کاربردهای بالینی آن هنوز هم دارای اهمیت بسیاری می‌باشد. هدف از این تحقیق جداسازی و بررسی ویژگی‌های جمعیت سلولی بخش عروق استرومای بافت چربی انسان با هدف اصلی بررسی حضور سلول‌های بنیادی در فرکشن عروق استرومای بافت چربی انسان می‌باشد.
روش مطالعه: طی این تحقیق تجربی-آزمایشگاهی بافت چربی از 10 بیمار گرفته و در شرایط استاندارد نگهداری شد. سلول‌ها پس از جداسازی به روش آنزیمی از نظر میزان زنده‌مانی و همچنین آنتی‌ژن‌های سطحی با روش فلوسایتومتری مورد بررسی قرار گرفتند.
نتایج: نتایج حاصل از این تحقیق نشان دادند ﮐﻪ سلول‌های بخش عروق استرومای بافت چربی دارای ویژگی زنده مانی بالا (بیش از 98 درصد) بوده و نسبت به مارکرهای CD16، CD34، CD73، CD29، CD105، CD31 و CD45 مثبت و نسبت به مارکرهای CD3، CD19 و CD38 منفی می‌باشند.
نتیجه‌گیری: یافته‌های این پژوهش نشانگر حضور سلول‌های بنیادی مشتق از چربی، سلول‌های اندوتلیالی، پری‌ادیپوسیت و ماکروفاژ در بخش عروقی استرومای مشتق از بافت چربی انسان بوده؛ بر این مبنا، این فرکشن دارای پتانسیل مناسبی در حوزه بالینی مربوط به سلول‌درمانی می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Isolation and evaluation of human adipose tissue characterization for preparation of vascular stem cells

نویسندگان [English]

  • Sona Zare 1
  • MohammadAli Nilforoushzade 1
  • Rahim Ahmadi 2
  • Zahra Esmaeili 3

1 Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Biology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

3 Department of Hematology, Faculty of Paramedical Sciences, Tehran University of Medical Sciences, Tehran, Iran

چکیده [English]

Introduction and Aim: Several studies have been carried out on the biological characteristics of a human adipose tissue-derived-stromal vascular fraction. However, investigating this fraction concerning its clinical application is still of significant importance. The aim of this study was to isolate and evaluate the cell population of human adipose stromal vascular fraction with the main aim of investigating the presence of stem cells in human adipose stromal vascular fraction.
Methods: In this laboratory-experimental study adipose tissues were obtained from 10 healthy individuals (30 to 58 years) and maintained in standard condition. After enzymatic isolation, the viability of stromal vascular fraction cells and surface antigens was evaluated by flow cytometry.
Results: The results of this study showed that adipose stromal vascular fraction cells had high viability (> 98%) and were positive for CD16, CD34, CD73, CD29, CD105, CD31, and CD45 markers and negative for CD3, CD19, and CD38 markers.
Conclusion: The findings of this study indicate the presence of adipose-derived stem cells, endothelial cells, peri-adipocytes, and macrophages. According to this, this fraction has potential in the clinical field of cell therapy.

کلیدواژه‌ها [English]

  • Stromal vascular fraction
  • Adipose tissue
  • Cell population
  • CD marker
Alabdulkarim, Y., Ghalimah, B., Al-Otaibi, M., Al-Jallad, H.F., Mekhael, M., Willie, B. and Hamdy, R. 2017. Recent advances in bone regeneration: The role of adipose tissue-derived stromal vascular fraction and mesenchymal stem cells. Journal of Limb Lengthening & Reconstruction, 3(1): 4.
Bora, P. and Majumdar, A.S. 2017. Adipose tissue-derived stromal vascular fraction in regenerative medicine: A brief review on biology and translation. Stem cell research & therapy, 8(1): 1-10.
Bourin, P., Bunnell, B.A., Casteilla, L., Dominici, M., Katz, A.J., March, K.L., Redl, H., Rubin, J.P., Yoshimura, K. and Gimble, J.M. 2013. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the international federation for adipose therapeutics and science (ifats) and the international society for cellular therapy (isct). Cytotherapy, 15(6): 641-648.
Bowles, A.C., Tucker, A. and Bunnell, B.A. 2018. Isolation and flow cytometric analysis of the stromal vascular fraction isolated from mouse adipose tissue. In: Adipose-derived stem cells. Springer: pp: 1-9.
Chandler, E.M., Seo, B.R., Califano, J.P., Eguiluz, R.C.A., Lee, J.S., Yoon, C.J., Tims, D.T., Wang, J.X., Cheng, L. and Mohanan, S. 2012. Implanted adipose progenitor cells as physicochemical regulators of breast cancer. Proceedings of the National Academy of Sciences, 109(25): 9786-9791.
Choi, J.S., Chae, D.-S., Ryu, H.A. and Kim, S.-W. 2019. Transplantation of human adipose tissue derived-svf enhance liver function through high anti-inflammatory property. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1864(12): 158526.
Cousin, B., André, M., Arnaud, E., Pénicaud, L. and Casteilla, L. 2003. Reconstitution of lethally irradiated mice by cells isolated from adipose tissue. Biochemical and biophysical research communications, 301(4): 1016-1022.
Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D. and Horwitz, E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy, 8(4): 315-317.
Francis, A., Wang, W.Z., Goldman, J.J., Fang, X.-H., Williams, S.J. and Baynosa, R.C. 2019. Enhancement of viable adipose-derived stem cells in lipoaspirate by buffering tumescent with sodium bicarbonate. Plastic and Reconstructive Surgery Global Open, 7(3).
Gimble, J.M., Bunnell, B.A., Frazier, T., Rowan, B., Shah, F., Thomas-Porch, C. and Wu, X. 2013. Adipose-derived stromal/stem cells: A primer. Organogenesis, 9(1): 3-10.
Han, S., Sun, H.M., Hwang, K.-C. and Kim, S.-W. 2015. Adipose-derived stromal vascular fraction cells: Update on clinical utility and efficacy. Critical Reviews™ in Eukaryotic Gene Expression, 25 (2): 145-152.
Horwitz, E., Le Blanc, K., Dominici, M., Mueller, I., Slaper-Cortenbach, I., Marini, F.C., Deans, R., Krause, D. and Keating, A. 2005. Clarification of the nomenclature for msc: The international society for cellular therapy position statement. Cytotherapy, 7(5): 393-395.
Hui, H., Tang, Y., Hu, M. and Zhao, X. 2011. Stem cells: General features and characteristics. In: Stem cells in clinic and research. IntechOpen.
Kamrani, Z., Heshmati, M. and Babashah, S. 2021. Evaluation effects of silymarin on cytotoxicity and apoptosis on sw480 colon cancer cell line. Journal of Research in Karyotic Cell &Tissue, 1(3): 8-15.
Lalu, M.M., McIntyre, L., Pugliese, C. and Stewart, D.J. 2010. Safety of cell therapy with mesenchymal stromal cells (mscs): A systematic review. D49. Clinical Trials In Critical Care: A6043-A6043.
Liu, Z., Zhang, Y., Xiao, H., Yao, Z., Zhang, H., Liu, Q., Wu, B., Nie, D., Li, Y. and Pang, Y. 2017. Cotransplantation of bone marrow-derived mesenchymal stem cells in haploidentical hematopoietic stem cell transplantation in patients with severe aplastic anemia: An interim summary for a multicenter phase ii trial results. Bone marrow transplantation, 52(5): 704-710.
Magalon, J., Velier, M., Simoncini, S., François, P., Bertrand, B., Daumas, A., Benyamine, A., Boissier, R., Arnaud, L. and Lyonnet, L. 2019. Molecular profile and proangiogenic activity of the adipose-derived stromal vascular fraction used as an autologous innovative medicinal product in patients with systemic sclerosis. Annals of the rheumatic diseases, 78(3): 391-398.
Mazini, L., Rochette, L., Amine, M. and Malka, G. 2019. Regenerative capacity of adipose derived stem cells (adscs), comparison with mesenchymal stem cells (mscs). International journal of molecular sciences, 20(10): 2523.
Mildmay-White, A. and Khan, W. 2017. Cell surface markers on adipose-derived stem cells: A systematic review. Current Stem Cell Research & Therapy, 12(6): 484-492.
Mizuno, H. 2009. Adipose-derived stem cells for tissue repair and regeneration: Ten years of research and a literature review. Journal of Nippon Medical School, 76(2): 56-66.
Mohammadi, Z., Afshari, J.T., Keramati, M.R., Alamdari, D.H., Ganjibakhsh, M., Zarmehri, A.M., Jangjoo, A., Sadeghian, M.H., Ameri, M.A. and Moinzadeh, L. 2015. Differentiation of adipocytes and osteocytes from human adipose and placental mesenchymal stem cells. Iranian journal of basic medical sciences, 18(3): 259.
Raščanin, S., Rančić, N., Dragović, S. and Jovanović, M. 2019. Embryonic stem cells: Where do we stand at the moment? Acta Medica Medianae, 58(3): 138-146.
Senesi, L., De Francesco, F., Farinelli, L., Manzotti, S., Gagliardi, G., Papalia, G.F., Riccio, M. and Gigante, A. 2019. Mechanical and enzymatic procedures to isolate the stromal vascular fraction from adipose tissue: Preliminary results. Frontiers in cell and developmental biology, 7: 88.
Solodeev, I., Meilik, B., Volovitz, I., Sela, M., Manheim, S., Yarkoni, S., Zipori, D., Gur, E. and Shani, N. 2018. Fas-l promotes the stem cell potency of adipose-derived mesenchymal cells. Cell death & disease, 9(6): 1-13.
Suga, H., Matsumoto, D., Eto, H., Inoue, K., Aoi, N., Kato, H., Araki, J. and Yoshimura, K. 2009. Functional implications of cd34 expression in human adipose–derived stem/progenitor cells. Stem cells and development, 18(8): 1201-1210.
Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P. and Hedrick, M.H. 2002. Human adipose tissue is a source of multipotent stem cells. Molecular biology of the cell, 13(12): 4279-4295.