Document Type : Original Article


Department of Venomous animals and Antivenom Production, Karaj Razi Serum Making Institute, Karaj, Iran


Introduction and Aim: Many colubrid snakes produce toxic oral secretions and some species have caused severe reactions in humans. In this research toxicity of Duvernoy´s gland secretion (DGS) from Hemorrhois ravergieri (aglyph) has been studied.
Methods: In this study, the effect of Hemorrhois ravergieri saliva on human dermal fibroblasts (HDF) cells growth was determined by the inverted microscope and MTT assay. The integrity of the cell membrane through LDH release was evaluated as well.
Results: The MTT assay and Neutral red assay showed a significant (p˂0.05) cytotoxic effect of Hemorrhois ravergieri salvia on HDF cells growth after 24 h treatment. Additionally, Hemorrhois ravergieri venom caused a significant increase in LDH release (p˂0.05). Numerous morphological abnormalities were observed in cells exposed to the DGS and showed loss of their common polygonal shape, appearing as several roughly rounded cells of variable size.
Conclusion: The Hemorrhois ravergieri saliva causes cytotoxic effects on HDF cells by the necrotic mechanism. This colubrid snake bite causes local symptoms, so this research suggests a more careful evaluation of the victims when considering the medical treatment to be adopted.


Main Subjects

Adukauskienė, D., Varanauskienė, E. and Adukauskaitė, A. 2011. Venomous snakebites. Medicina, 47(8): 461.
Calvete, J.J., Juárez, P. and Sanz, L. 2007. Snake venomics. Strategy and applications. Journal of mass spectrometry, 42(11): 1405-1414.
de Aquino Nery, M.D., Alves, N.T.Q., de Souza Alves, R., de Sousa, D.F., de Menezes, D.B., de Aquino Nery, E., de Aquino, H.D., Ribeiro, R.d.T.M. and Monteiro, H.S.A. 2014. The renal effects and initial characterization of venom from philodryas nattereri steindachner, 1870. Toxicology reports, 1: 812-819.
Dehghani, R., Fathi, B., Shahi, M.P. and Jazayeri, M. 2014. Ten years of snakebites in iran. Toxicon, 90: 291-298.
Glandt, D. 2010. Taschenlexikon der amphibien und reptilien europas: Alle arten von den kanarischen inseln bis zum ural. Quelle & Meyer.
Goswami, P.K., Samant, M. and Srivastava, R.S. 2014. Snake venom, anti-snake venom & potential of snake venom. International Journal of Pharmacy and Pharmaceutical Sciences, 6(5): 4-7.
Gutiérrez, J.M., Williams, D., Fan, H.W. and Warrell, D.A. 2010. Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon, 56(7): 1223-1235.
Hekmat, A., Afrough, M., Hesami Tackallou, S. and Ahmad, F. 2020. Synergistic effects of titanium dioxide nanoparticles and paclitaxel combination on the DNA structure and their antiproliferative role on mda-mb-231cells. Journal of Nanoanalysis: -. DOI 10.22034/jna.2020.1869287.1141.
Kardong, K.V. 2002. Colubrid snakes and duvernoy's “venom” glands. Journal of Toxicology: Toxin Reviews, 21(1-2): 1-19.
Koh, D., Armugam, A. and Jeyaseelan, K. 2006. Snake venom components and their applications in biomedicine. Cellular and Molecular Life Sciences CMLS, 63(24): 3030-3041.
Lemoine, K., Girón, M.E., Aguilar, I., Navarrete, L.F. and Rodríguez-Acosta, A. 2004. Proteolytic, hemorrhagic, and neurotoxic activities caused by leptodeira annulata ashmeadii (serpentes: Colubridae) duvernoy's gland secretion. Wilderness & Environmental Medicine, 15(2): 82-89.
Lemoine, K. and Rodríguez-Acosta, A. 2003. Haemorrhagic, proteolytic and neurotoxic activities produced by duvernoy's gland secretion from the false coral snake (erythrolamprus bizona jan 1863)(serpentes: Colubridae). Revista Científica de la Facultad de Ciencias Veterinarias, 13(5): 371-378.
Mackessy, S.P. and Saviola, A.J. 2016. Understanding biological roles of venoms among the caenophidia: The importance of rear-fanged snakes. Oxford University Press.
McCue, M.D. 2005. Enzyme activities and biological functions of snake venoms. Appl Herpetol, 2(2): 109-123.
Nalbantsoy, A., Karabay-Yavasoglu, N., Sayim, F., Deliloglu-Gurhan, I., Gocmen, B., Arikan, H. and Yildiz, M. 2012. Determination of in vivo toxicity and in vitro cytotoxicity of venom from the cypriot blunt-nosed viper macrovipera lebetina lebetina and antivenom production. Journal of Venomous Animals and Toxins including Tropical Diseases, 18: 208-216.
Powers, J.L., Kiesman, N.E., Tran, C.M., Brown, J.H. and Bevilacqua, V.L. 2007. Lactate dehydrogenase kinetics and inhibition using a microplate reader. Biochemistry and Molecular Biology Education, 35(4): 287-292.
Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A., Worzella, T.J. and Minor, L. 2016. Cell viability assays. In: Assay guidance manual [internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences.
Warrell, D.A., Gutiérrez, J.M., Calvete, J.J. and Williams, D. 2013. New approaches & technologies of venomics to meet the challenge of human envenoming by snakebites in india. The Indian journal of medical research, 138(1): 38.
Zare MirakAbadi, A. and Horrieh, P. 2020. The toxicity induction in human dermal fibroblasts (hdf) cells by saliva of echis carinatus sochureki. Journal of Research in Karyotic Cell &Tissue, 1(1): 1-8.